Self-Adaptation for Multi-objective Evolutionary Algorithms
نویسندگان
چکیده
Evolutionary Algorithms are a standard tool for multi-objective optimization that are able to approximate the Pareto front in a single optimization run. However, for some selection operators, the algorithm stagnates at a certain distance from the Pareto front without convergence for further iterations. We analyze this observation for different multi-objective selection operators. We derive a simple analytical estimate of the stagnation distance for several selection operators, that use the dominance criterion for the fitness assignment. Two of the examined operators are shown to converge with arbitrary precision to the Pareto front. We exploit this property and propose a novel algorithm to increase their convergence speed by introducing suitable self-adaptive mutation. This adaptive mutation takes into account the distance to the Pareto front. All algorithms are analyzed on a 2and 3-objective test function.
منابع مشابه
Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملMulti-objective evolutionary algorithms for a preventive healthcare facility network design
Preventive healthcare aims at reducing the likelihood and severity of potentially life-threatening illnesses by protection and early detection. In this paper, a bi-objective mathematical model is proposed to design a network of preventive healthcare facilities so as to minimize total travel and waiting time as well as establishment and staffing cost. Moreover, each facility acts as M/M/1 queuin...
متن کاملMulti-objective Optimization of a Solar Driven Combined Power and Refrigeration System Using Two Evolutionary Algorithms Based on Exergoeconomic Concept
This paper deals with a multi-objective optimization of a novel micro solar driven combined power and ejector refrigeration system (CPER). The system combines an organic Rankine cycle (ORC) with an ejector refrigeration cycle to generate electricity and cold capacity simultaneously. Major thermodynamic parameters, namely turbine inlet temperature, turbine inlet pressure, turbine back pressure, ...
متن کاملA multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project
This paper presents a multi-objective resource-constrained project scheduling problem with positive and negative cash flows. The net present value (NPV) maximization and making span minimization are this study objectives. And since this problem is considered as complex optimization in NP-Hard context, we present a mathematical model for the given problem and solve three evolutionary algorithms;...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کامل